Matemática básica (básica mesmo!)

Pouca gente sabe, mas no fim do Ensino Médio cheguei a dar aulas particulares de matemática e física para concursos e vestibulares. Eu costumava ser bastante objetivo e procurava focar no que poderia “cair” nas provas. Entretanto, não sei explicar ao certo o que aconteceu comigo nesses últimos anos, desde que comecei a me interessar por filosofia. Pois vejam vocês que esta semana minha noiva me pediu que eu lhe desse umas aulinhas de matemática básica – disciplina que, para ela, sempre foi um ponto fraco. Depois de uma breve pesquisa, comecei mais ou menos assim:


Pequenas quantidades são percebidas tanto por humanos quanto por outros animais. Uma cadela sabe se sua ninhada foi mexida, por exemplo. Isso se chama percepção numérica. A contagem, entretanto, é um atributo exclusivamente humano, intimamente ligado ao desenvolvimento da inteligência. Não se sabe ao certo quando o homem começou a medir as coisas de forma quantitativa, mas sabe-se que a contagem se desenvolveu especificamente para lidar com necessidades simples do dia a dia. O método de contagem mais antigo é o do osso ou pedaço de madeira entalhado. Os primeiros testemunhos arqueológicos dessa prática datam de 35 mil a 20 mil a.C.

As primeiras noções de quantidade com que o homem começou a lidar foram as mais próximas de sua realidade. Logo, 1 e 2 são os números mais antigos. De 3 em diante, era tudo uma mesma quantidade disforme que representava “muito”. Os sumérios, em 3 mil a.C., usavam o termo “es” para representar o número 3 e ao mesmo tempo “muitas coisas”. Não havia definição para 4 em diante. A própria noção de que um número representa uma quantidade específica levou séculos para ser absorvida. Dois são dois, não importa se são 2 ovos, 2 elefantes ou 2 ônibus. Mas, até hoje, alguns idiomas contêm traços dessa antiga separação. E isso é intrinsecamente ligado à cultura e ao cotidiano de um povo. Em Fiji, arquipélago no Pacífico pouco menor que Sergipe, cocos e barcos fazem parte da cultura local de tal maneira que existem palavras diferentes para a mesma quantidade deles. Por exemplo, 10 cocos é koro e 10 barcos é bolo.

Calcular faz parte do cotidiano do homem. A verdadeira revolução, portanto, está na forma de fazer cálculos: uma novidade que chegou ao Ocidente há menos de mil anos. Até então, havia diferentes sistemas numéricos, criados por diferentes civilizações, como a mesopotâmica, maia, egípcia, grega e chinesa. Todos com uma coisa em comum: desordem. Esses sistemas tinham um nome ou objeto diferente para cada número. Ou seja, teoricamente, eram modelos com símbolos infinitos. E, por razões práticas, nenhum método assim sobrevive por muito tempo. Essa dificuldade de escrever números grandes também prejudicava a adição, a subtração, a multiplicação e a divisão. Foi aí que, na Índia do século 5 a.C., surgiu a base decimal, ou seja, a noção de que números podem ser arrumados hierarquicamente, usando-se apenas 10 símbolos. Por exemplo, apenas com o símbolo 5 pode-se representar infinitos números: 55, 555, 5555 e assim por diante. Não era mais necessário um símbolo para cada número. Mas como definir o valor desses símbolos postos lado a lado? Depende da posição em que cada um está, da direita para a esquerda: casa das unidades, dezenas, centenas, etc. Ideia simples e funcional, que eu, você e todo mundo sabe. Mas que demorou 1,7 mil anos para se espalhar.

Mas por que a base é decimal e não quinzenal, por exemplo? Na verdade, houve outras bases. A base 20 já foi popular na Europa Ocidental. Até hoje, em francês, 80 é quatre-vingts (quatro vintes). Alguns povos, como os sumérios, em 4000 a.C, optaram por organizar seres e objetos em grupos de 60. “Esse sistema sobrecarrega o cérebro, já que requer um símbolo para todos os números de 1 a 60”, diz o astrofísico Mario Lívio. Mesmo assim, a forma suméria deixou um legado que perdura até hoje, na divisão da hora em 60 minutos de 60 segundos cada. Mas foi a base decimal que deu mais certo e conquistou o mundo. Muito provavelmente por causa de um motivo trivial. Ela teria sido inspirada nos 10 dedos da mão, a primeira coisa que o homem usou para calcular.

Adaptado da revista Superinteressante, edição 296, de outubro de 2011.


10 números maravilhosos

Alex no País dos Números, do jornalista inglês Alex Bellos, não ajuda muito quem procura truques para, digamos, decorar a tabuada, mas ilumina bem as razões por que ela é ensinada. Veja a seguir 10 números maravilhosos explorados no livro:

A tirania do 10: O homem começou a contar com os dedos, e é por isso que as bases numéricas mais comuns ao longo da história são o 5 (uma mão), o 10 (as duas mãos) e o 20 (mãos e pés). O sistema decimal, com dez algarismos de 0 a 9, prevaleceu, mas muita gente acha que isso já foi longe demais. Carlos 12 da Suécia, achando a base 10 “rústica”, encomendou no século 18 um sistema de base 64 (se você acha matemática difícil, imagina ter que começar decorando 64 algarismos diferentes). É uma ideia extravagante, mas Alex Bellos argumenta que o ponto de vista é válido: por que limitar a matemática a uma particularidade anatômica? “Se os humanos fossem como personagens da Disney, é quase certo que viveríamos num mundo de base 8, dando notas até 8, elegendo os 8 melhores”, escreve. Desde o século 17, muitos matemáticos e filósofos advogaram em favor da base 12, o sistema duodecimal. A vantagem de contar de 12 em 12 é simples: 10 só se divide por 2 ou 5, enquanto o 12 admite 2, 3, 4 e 6, o que automaticamente torna as frações e a tabuada muito mais simples. A campanha em prol do sistema duodecimal contra “a tirania do 10” levou à criação de associações nos Estados Unidos e Inglaterra, que ainda hoje tentam emplacar os símbolos que completam a base 12, dek e el. É uma dura batalha. Mas vale lembrar uma importante vitória sobre o sistema decimal. No século 18, a França tentou verter o dia e as horas para a base 10. Cada dia teria 10 horas; cada hora, 100 minutos; cada minuto, 100 segundos. A medida foi abandonada seis meses depois em favor do velho sistema de 24 (2 vezes 12) horas, em que as horas têm 60 (5 vezes 12) minutos, e os minutos, 60 (5 vezes 12) segundos.

Loucos por 3,14: O pi é uma celebridade matemática, e como toda celebridade tem seus seguidores fanáticos. Akira Haraguchi é recordista em memorizar dígitos do pi – que a rigor não têm fim. Haraguchi pode recitar até 100 mil casas decimais, o que lhe toma 16 horas seguidas. Mats Bergsten tem um recorde mais estranho: memorizar dígitos de pi e fazer malabarismo ao mesmo tempo. Chegou a quase 10 mil casas. Outros adoradores de pi forjaram uma espécie de corrente literária dedicada a fabricar versos em que cada casa decimal de pi determina o número de letras das palavras. São os chamados “piemas”, e o mais ambicioso cobre 3835 casas decimais. A obsessão é antiga. Muito antes da introdução de seu símbolo (π), no século 18, já se sabia que, dado um círculo qualquer, a razão entre a circunferência e o diâmetro é sempre a mesma. Mas qual? Os babilônios chegaram a 3,125 (3 e 1/8). Os egípcios acharam 3,160 (4(8/9)2). E de uma passagem da Bíblia pode-se deduzir exatos 3. Coube a Arquimedes, que viveu no século 3 a.C., montar um primeiro “construtor” de pi, com que chegou à precisão de duas casas decimais (3,14). Mais duas casas (3,1415) bastariam aos engenheiros de instrumentos de precisão. Com dez (3,1415926535), pode-se calcular a circunferência da Terra com desvio de menos de um centímetro. Mas o fanatismo não tem limite, e hoje se conhece pi com 2,7 trilhões de casas decimais, o que acabou se tornando, para além da matemática, um jeito confiável de testar a capacidade de supercomputadores.

O infinito e além: Os gregos antigos tentaram evitar as armadilhas do infinito. O geômetra Euclides, para dizer que a série de números primos é infinita, expressou-se da seguinte maneira: não existe um número primo que seja maior que todos. Já o filósofo Zenão de Eleia pôs o infinito no centro de um de seus famosos paradoxos: uma corrida disputada por uma tartaruga e Aquiles, em que o herói percorre distâncias cada vez menores, infinitamente, e, assim, embora mais rápido, nunca alcança o animal. Com o advento do cálculo numérico, o infinito passou a ser visto como mais uma ferramenta matemática – que prova com facilidade a vantagem de Aquiles sobre a tartaruga de Zenão. No século 19, Georg Cantor demonstrou haver outros infinitos, uns maiores que outros. E não se trata da soma ou multiplicação de infinitos, que dá no mesmo. O infinito de Cantor, que ele chamou de c, é um conjunto que inclui números irracionais – aqueles que não podem ser expressos por frações, como a raiz quadrada de 2. A diferença entre os dois infinitos é que um é enumerável, e o outro, um contínuo de pontos – aliás, c pode ser imaginado como o número de pontos que cabem em uma superfície. Cantor é o emblema do matemático genial, místico e transtornado. Já famoso, foi tomado pela paranoia de que Francis Bacon foi quem escreveu as peças de Shakespeare. Sofreu inúmeras crises nervosas, acabou internado e morreu em um hospital psiquiátrico em 1918.

A beleza em 1,618: A razão áurea, proporção divina ou simplesmente fi, foi descoberta pelos gregos na estrela de cinco pontas adorada pela Fraternidade Pitagórica e desde então cultuada por matemáticos e artistas. Comumente arredondada para 1,618, a razão áurea é o assunto do tratado A divina proporção, de 1509, de autoria de Lucas Pacioli, com direito a ilustração de Leonardo da Vinci. Conforme Pacioli e um sem número de adoradores, fi é uma mensagem divina e uma instrução de beleza. No século 19, Adolf Zeising não deixou por menos: fi é a lei universal que “permeia, como supremo ideal do espírito, todas as estruturas, formas e proporções, cósmicas ou individuais, orgânicas ou inorgânicas, acústicas ou óticas; e que no entanto encontra sua mais plena realização na forma humana”. Fi surge também na mais famosa série numérica, a sequencia de Fibonacci, em que cada número é a soma dos dois termos anteriores (0, 1, 1, 2, 3, 5, 8, 13 etc). Na série, a razão entre cada número e seu antecessor (13/8, 21/13, 34/21 etc) aproxima-se progressivamente de fi, sem nunca alcançá-lo, uma vez que fi não tem fim. De girassóis a abacaxis, da reprodução de coelhos ao voo dos falcões, o mundo natural tem especial predileção pela série de Fibonacci, daí a aparente ubiquidade de fi.

Zero (e menos que zero): O zero é uma abstração fundamental da matemática que escapou a muitas culturas e ainda escapa ao chimpanzé Ai, famoso por suas habilidades matemáticas. Acabou inventado na Índia e levou, por extensão, à descoberta dos números negativos – impensáveis no mundo helênico, uma vez em que em sua compreensão espacial da matemática não fazia sentido um triângulo negativo ou um círculo nulo. Na Índia, zero era shunya, que também significava éter, ponto, furo e serpente da eternidade. No século 7, os indianos demonstraram que uma fortuna (o número positivo) menos shunya é uma fortuna; uma fortuna subtraída de shunya é uma dívida (o número negativo); shunya vezes uma fortuna ou uma dívida é shunya, etc. Shunya, cujo símbolo virou o círculo, foi adotado pelos árabes como zephyr e ganhou publicidade na Europa em um dos mais famosos livros da história da matemática, o Liber Abaci, de Fibonacci, de 1202. Na obra, Fibonacci demonstrou suas vantagens sobre os algarismos romanos para fins aritméticos (experimente multiplicar XXXIV por LXIII). A propósito, o primeiro capítulo de Alex no País dos Números é o zero.

1, 2, muitos: Em sua jornada, Bellos reúne vários argumentos em favor da tese de que os números são um artefato cultural, não uma aptidão inata. A exatidão numérica, argumentam especialistas, é uma construção simbólica. Damos respostas instantâneas para contar quantidades só até três ou quatro, mas daí em diante o cérebro demora a acertar – e muitas vezes erra. Isso porque o cérebro passa a trabalhar com aproximações. É a provável razão para que diversas culturas representem 1, 2 e 3 por uma, duas e três linhas (unidas ou não), e prefiram outros símbolos para números maiores. No inglês, thrice pode ser “três vezes” mas também pode ser “muitas vezes”. No francês, très é muito e trois, três. Muitas culturas, incluindo várias tribos indígenas, nunca foram além do três ou do quatro. Não cunharam termos para “exatamente 5” ou “exatamente 9”. Privilegiaram as aproximações e as proporções. Em sua pesquisa, Bellos ouviu que a intuição humana, como a dos índios que só contam até três, é logarítmica, não linear. É uma lógica que permite boas estimativas rápidas – como escolher a menor fila do supermercado. Só não ajuda muito na sala de aula.

A perfeição do 6: “Seis não é perfeito porque Deus criou o mundo em seis dias; Deus é que aperfeiçoou o mundo em seis dias porque esse número é perfeito”, escreveu no século 9 o teólogo Rabanus Maurus. Do ponto de vista matemático, perfeitos são os números inteiros iguais à soma de seus próprios fatores. Seis é o primeiro da lista (1 + 2 + 3). Depois vem 28 (1 + 2 + 4 + 7 + 14), 496, 8.128 e o próximo da lista é só 33.550.336. Os números perfeitos já eram conhecidos dos gregos, e foi Euclides quem demonstrou sua relação com os números primos. Uma variação do número perfeito são os números sociais e os amigáveis. Amigável é um par de números em que a soma dos fatores de um é igual ao outro, como 220 e 284 (220 é divisível por 1,2,4,5,10,11,20,22,44,55 e 110, que somam 284, cujos fatores são 1,2,4,71 e 142, que somam… 220). Levou séculos até que se descobrisse um outro par de números amigáveis, o que coube ao célebre matemático francês Pierre de Fermat, que em 1636 encontrou os amigáveis 17296 e 18416. Números sociáveis seguem a mesma lógica, só que em “turmas” maiores, em que cada membro é a soma dos fatores do seguinte.

243112609-1: Primo é o número natural maior que 1 com só dois divisores: ele próprio e 1. Ou seja: 2, 3, 5, 7, 11, 13, 17 etc. Há milênios Euclides demonstrou que a série é infinita. Mas isso não impediu que a caçada por primos cada vez maiores atravessasse os séculos. O desafio é que, quanto maior o primo, tantos mais números haverá para testá-lo. Para tanto, muitos matemáticos valeram-se de um método gerador de um certo tipo de número primo conhecido como primo de Mersenne, que equivale a 2n -1. Mas qual o n? Na era do lápis e papel, o primo mais alto conhecido era 2127-1. Atualmente, o recorde é 243112609-1, um numerão de quase 13 milhões de dígitos descoberto em 2008 por uma das primeiras redes bem sucedidas de computação compartilhada, em que várias máquinas conectadas pela internet “racham” a conta. Aos interessados, há um prêmio de 250 milhões de dólares para quem achar um número primo que tenha 1 bilhão de dígitos.

9999999999: Até a popularização do lápis e papel, os números eram comunicados por meio de intrincadas linguagens de sinais. No século 8, na Nortúmbria, território da atual Inglaterra, o teólogo Venerável Bede propôs um sistema de contagem que começava com os dedos da mão esquerda, para unidades e dezenas, e crescia de grandeza com o auxílio de movimentos das mãos até chegar em 1 milhão (reservando para o 90 mil uma imagem não muito casta: “agarre a virilha com a mão esquerda, com o polegar voltado para os genitais”). Já os Yupno, da Papua Nova Guiné, contam do 1 ao 33: começam no mindinho da mão esquerda, vão até 20 com o dedão do pé direito, chegam ao 30 no umbigo e terminam com o 33 no pênis. Os chineses até hoje conhecem uma técnica para contar até 9.999.999.999 tocando diferentes pontos de cada dedo da mão. “Dessa forma é possível contar todos os habitantes da Terra apenas com os dedos”, escreve Bellos. “O que é uma forma de ter o mundo nas mãos”.

10 elevado a 421: Antigamente na Índia, números muito, muito grandes ou muito, muito pequenos eram uma questão ao mesmo tempo matemática e filosófica. Em um texto em sânscrito do século 4, Buda cunhou uma série de múltiplos de 100 que começa com koti (10 milhões) e termina com tallakshana, que é igual a um koti multiplicado 23 vezes por 100, ou, na notação moderna, 10 elevado a 53. Em seu livro, Bellos dá uma ideia do tamanho disso: equivale à medida do universo medido em metros elevada ao quadrado. E Buda foi além. Fala em outros seis sistemas progressivamente maiores e mais assustadores, sendo que o último termina em 10 elevado a 421. Outra comparação de Bellos: se multiplicarmos o número de átomos de todo universo por sua idade, medida segundo a menor unidade de tempo – o tempo de Planck, igual a um segundo dividido por 1043, chegaríamos a “apenas” 10 elevado a 140, o que ainda é absolutamente irrisório perto de 10 elevado a 421.


A sequência de Fibonacci

O matemático italiano Leonardo de Pisa, mais conhecido como Fibonacci, propôs no final do século 12 a seguinte sequência de números naturais: {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 … ∞}. Essa sequência tem leis de formação muito simples: primeiro, ela começa com os números 0 e 1. Depois, cada elemento é obtido somando-se os dois anteriores (0+1=1, 1+1=2, 2+1=3, 3+2=5, 5+3=8 e assim por diante). Misteriosamente, essa sequência aparece em inúmeros fenômenos da natureza. Ao transformar esses números em quadrados e dispô-los de maneira geométrica, é possível traçar uma espiral perfeita, que também aparece em diversos organismos vivos.

Outra curiosidade é que a sequência também estabelece a chamada “proporção áurea” (ou “número de ouro”), muito usada na arte, na arquitetura e no design por ser considerada agradável ao olho humano. Representado na matemática pela letra grega φ (lê-se “fi”), o número de ouro é aproximadamente 1,618. Quanto mais você avança na sequência de Fibonacci, mais a divisão entre um termo e seu antecessor se aproxima desse número. Veja alguns exemplos da aplicação da sequência de Fibonacci e entenda por que ela é conhecida como uma das maravilhas da Matemática:


CONCHA DO CARAMUJO

Cada novo pedacinho de calcário tem a dimensão da soma dos dois anteriores. O resultado é uma concha em forma da espiral de Fibonacci.

.

PRESAS DO ELEFANTE

Se as presas de marfim de um elefante crescessem sem parar, ao final do processo, elas teriam o formato de uma espiral de Fibonacci.

.

CAUDA DO CAMALEÃO

Quando totalmente contraída, a cauda do camaleão é uma das representações mais perfeitas da espiral de Fibonacci.

.

CAUDA DO CAVALO MARINHO

A cauda do cavalo marinho segue a mesma lógica da cauda do camaleão: quando totalmente contraída, tem a forma da espiral de Fibonacci.

.

SEMENTES DO GIRASSOL

Suas sementes preenchem o miolo dispostas em dois conjuntos de espirais: geralmente, 21 no sentido horário e 34 no anti-horário.

.

SEMENTES DA PINHA

As sementes crescem e se organizam em duas espirais que lembram a de Fibonacci: 8 irradiando no sentido horário e 13 no anti-horário.

.

PARTENON DE ATENAS

Os gregos já conheciam a proporção, embora não a fórmula para defini-la. A largura e a altura da fachada deste templo do século 5 a.C. estão na proporção de 1 para 1,618.

.

PIRÂMIDES DO EGITO

Mais um mistério: cada bloco é 1,618 vezes maior que o bloco do nível imediatamente acima. Em algumas, as câmaras internas têm comprimento 1,618 vezes maior que sua largura.

.

POEMA “ILÍADA” DE HOMERO

Acharam o “número de ouro” até na razão entre as estrofes maiores e menores da Ilíada, épico de Homero sobre os últimos dias da Guerra de Troia.

.

QUADRO DA MONA LISA

Esse recurso matemático também foi uma das principais marcas do Renascimento. A Mona Lisa, de Leonardo da Vinci, usa a razão na relação entre tronco e cabeça e entre elementos do rosto.

.

CORPO HUMANO

A proporção ideal para o corpo humano é medida dividindo a altura da pessoa pela distância entre o seu umbigo e o topo da cabeça. O ideal é que o resultado seja algo em torno de 1,618.

.

ROSTO HUMANO

Dizem que, nas faces consideradas mais harmoniosas, a divisão da distância entre o centro da boca e o “terceiro olho” pela distância entre esse ponto e uma das pupilas bate no 1,618.

.

fibonacci-handMÃOS HUMANAS

Com exceção do polegar, em todos os outros dedos as articulações se relacionam na razão áurea.

.

O Twitter e a habilidade de concisão

A máxima “menos é mais” nunca fez tanto sentido como faz hoje, depois da ascenção do Twitter, rede social cuja premissa é dizer algo – não importa o quê – em apenas 140 caracteres. Desde que o serviço foi criado, em 2006, o número de usuários da ferramenta é cada vez maior, assim como a diversidade de usos que se faz dela. Do estilo “querido diário” à literatura concisa, passando por aforismos, citações, jornalismo, fofoca, humor, etc., tudo ganha o espaço de um tweet (“pio” em inglês). Entender o sucesso do Twitter pode indicar um caminho para o aprimoramento de um recurso vital à escrita: a concisão. No fim das contas, fica a lição: desenrolar em uma linha vale muito mais do que enrolar em uma página. E o post termina aqui mesmo, porque tudo o que eu tinha pra dizer, disse em apenas um parágrafo. Acho que peguei o jeito.


A obsessão por textos longos

Artigo de Danilo Venticinque para a revista Época.

A proliferação de textos fragmentados e superficiais na internet provocou outra praga igualmente irritante: as divagações intermináveis disfarçadas de post. Longo virou sinônimo de bom. Há sites e páginas em redes sociais dedicados a reunir textos longos sobre os mais variados temas. O fetiche é mais importante do que o conteúdo. Numa época em que a maioria lê pouco e mal, enfrentar um texto longo e compartilhá-lo é uma espécie de troféu. Um sinal de resistência aos tempos de fragmentação.

Nada contra leituras de fôlego – muito pelo contrário. Mas tenho deparado frequentemente com textos longos demais. A impressão é que escrever muito virou obrigação para qualquer um que quer ser levado a sério. O resultado? Para não ser confundido com um palpiteiro virtual, quem quer compartilhar uma ideia simples se vê forçado a dar voltas em torno do próprio rabo, fazer rodeios e desperdiçar o tempo do leitor até chegar à ideia central do texto, escondida lá pelo décimo parágrafo. Outros decidem fazer o mesmo e a timeline alheia é infestada por textos “definitivos” sobre a polêmica do momento. Até no Twitter há quem seja prolixo. 140 caracteres são uma imensidão para quem não tem nada a dizer.

Talvez seja a hora de redescobrir a concisão. Escrever muito ou pouco é o de menos. O que importa é ir direto ao assunto. Eu ia incluir aqui um parágrafo sobre a importância das narrativas curtas na literatura e sobre como Tolstói soube dar o tamanho perfeito tanto para Guerra e paz (mais de 1500 páginas) quanto para A morte de Ivan Ilitch (menos de 100). Decidi cortar o trecho para este texto não ficar longo demais. No cotidiano, são raras as ideias complexas o bastante para precisarem ser divididas e explicadas em dezenas de parágrafos. Ideias curtas pedem textos curtos. Mesmo se o que o autor tem a dizer for uma bobagem, ao menos ele terá economizado o tempo do leitor.


Abolição da escravatura no Twitter:

princesa-isabel-twitter

Related Posts Plugin for WordPress, Blogger...
Pág. 16 de 16Pág. 1 de 16...10...141516
%d blogueiros gostam disto: